کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9514567 1632609 2005 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rank-width and Well-quasi-ordering of Skew-symmetric Matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Rank-width and Well-quasi-ordering of Skew-symmetric Matrices
چکیده انگلیسی
Robertson and Seymour prove that a set of graphs of bounded tree-width is well-quasi-ordered by the graph minor relation. By extending their methods to matroids, Geelen, Gerards, and Whittle prove that a set of matroids representable over a fixed finite field are well-quasi-ordered if it has bounded branch-width. More recently, it is shown that a set of graphs of bounded rank-width (or clique-width) is well-quasi-ordered by the graph vertex-minor relation. The proof of the last one uses isotropic systems defined by A. Bouchet. We obtain a common generalization of the above three theorems in terms of skew-symmetric matrices over a fixed finite field.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 22, 15 October 2005, Pages 281-285
نویسندگان
,