کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9516054 1343756 2005 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture
چکیده انگلیسی
Since χ(G)·α(G)⩾n(G), Hadwiger's conjecture implies that any graph G has the complete graph K⌈n/α⌉ as a minor, where n=n(G) is the number of vertices of G and α=α(G) is the maximum number of independent vertices in G. Duchet and Meyniel [Ann. Discrete Math. 13 (1982) 71-74] proved that any G has K⌈n/(2α-1)⌉ as a minor. For α(G)=2G has K⌈n/3⌉ as a minor. Paul Seymour asked if it is possible to obtain a larger constant than 13 for this case. To our knowledge this has not yet been achieved. Our main goal here is to show that the constant 1/(2α-1) of Duchet and Meyniel can be improved to a larger constant, depending on α, for all α⩾3. Our method does not work for α=2 and we only present some observations on this case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 95, Issue 1, September 2005, Pages 152-167
نویسندگان
, , ,