کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9518007 1633860 2005 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mappings of finite distortion: the degree of regularity
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Mappings of finite distortion: the degree of regularity
چکیده انگلیسی
This paper investigates the self-improving integrability properties of the so-called mappings of finite distortion. Let K(x)⩾1 be a measurable function defined on a domain Ω⊂Rn,n⩾2, and such that exp(βK(x))∈Lloc1(Ω), β>0. We show that there exist two universal constants c1(n),c2(n) with the following property: Let f be a mapping in Wloc1,1(Ω,Rn) with |Df(x)|n⩽K(x)J(x,f) for a.e. x∈Ω and such that the Jacobian determinant J(x,f) is locally in L1log−c1(n)βL. Then automatically J(x,f) is locally in L1logc2(n)βL(Ω). This result constitutes the appropriate analog for the self-improving regularity of quasiregular mappings and clarifies many other interesting properties of mappings of finite distortion. Namely, we obtain novel results on the size of removable singularities for bounded mappings of finite distortion, and on the area distortion under this class of mappings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 190, Issue 2, 30 January 2005, Pages 300-318
نویسندگان
, , ,