کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9518007 | 1633860 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mappings of finite distortion: the degree of regularity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper investigates the self-improving integrability properties of the so-called mappings of finite distortion. Let K(x)⩾1 be a measurable function defined on a domain ΩâRn,n⩾2, and such that exp(βK(x))âLloc1(Ω), β>0. We show that there exist two universal constants c1(n),c2(n) with the following property: Let f be a mapping in Wloc1,1(Ω,Rn) with |Df(x)|n⩽K(x)J(x,f) for a.e. xâΩ and such that the Jacobian determinant J(x,f) is locally in L1logâc1(n)βL. Then automatically J(x,f) is locally in L1logc2(n)βL(Ω). This result constitutes the appropriate analog for the self-improving regularity of quasiregular mappings and clarifies many other interesting properties of mappings of finite distortion. Namely, we obtain novel results on the size of removable singularities for bounded mappings of finite distortion, and on the area distortion under this class of mappings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 190, Issue 2, 30 January 2005, Pages 300-318
Journal: Advances in Mathematics - Volume 190, Issue 2, 30 January 2005, Pages 300-318
نویسندگان
Daniel Faraco, Pekka Koskela, Xiao Zhong,