کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9518038 1345515 2005 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
2-Descent on elliptic curves and rational points on certain Kummer surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
2-Descent on elliptic curves and rational points on certain Kummer surfaces
چکیده انگلیسی
The first part of this paper further refines the methodology for 2-descents on elliptic curves with rational 2-division points which was introduced in [J.-L. Colliot-Thélène, A.N. Skorobogatov, Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points, Invent. Math. 134 (1998) 579-650]. To describe the rest, let E(1) and E(2) be elliptic curves, D(1) and D(2) their respective 2-coverings, and X be the Kummer surface attached to D(1)×D(2). In the appendix we study the Brauer-Manin obstruction to the existence of rational points on X. In the second part of the paper, in which we further assume that the two elliptic curves have all their 2-division points rational, we obtain sufficient conditions for X to contain rational points; and we consider how these conditions are related to Brauer-Manin obstructions. This second part depends on the hypothesis that the relevent Tate-Shafarevich group is finite, but it does not require Schinzel's Hypothesis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 198, Issue 2, 20 December 2005, Pages 448-483
نویسندگان
, ,