کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9518130 1345526 2005 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On face numbers of manifolds with symmetry
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
On face numbers of manifolds with symmetry
چکیده انگلیسی
Necessary conditions on the face numbers of Cohen-Macaulay simplicial complexes admitting a proper action of the cyclic group Z/pZ of a prime order are given. This result is extended further to necessary conditions on the face numbers and the Betti numbers of Buchsbaum simplicial complexes with a proper Z/pZ-action. Adin's upper bounds on the face numbers of Cohen-Macaulay complexes with symmetry are shown to hold for all (d−1)-dimensional Buchsbaum complexes with symmetry on n⩾3d−2 vertices. A generalization of Kühnel's conjecture on the Euler characteristic of 2k-dimensional manifolds and Sparla's analog of this conjecture for centrally symmetric 2k-manifolds are verified for all 2k-manifolds on n⩾6k+3 vertices. Connections to the Upper Bound Theorem are discussed and its new version for centrally symmetric manifolds is established.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 192, Issue 1, 20 March 2005, Pages 183-208
نویسندگان
,