کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9518130 | 1345526 | 2005 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On face numbers of manifolds with symmetry
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Necessary conditions on the face numbers of Cohen-Macaulay simplicial complexes admitting a proper action of the cyclic group Z/pZ of a prime order are given. This result is extended further to necessary conditions on the face numbers and the Betti numbers of Buchsbaum simplicial complexes with a proper Z/pZ-action. Adin's upper bounds on the face numbers of Cohen-Macaulay complexes with symmetry are shown to hold for all (dâ1)-dimensional Buchsbaum complexes with symmetry on n⩾3dâ2 vertices. A generalization of Kühnel's conjecture on the Euler characteristic of 2k-dimensional manifolds and Sparla's analog of this conjecture for centrally symmetric 2k-manifolds are verified for all 2k-manifolds on n⩾6k+3 vertices. Connections to the Upper Bound Theorem are discussed and its new version for centrally symmetric manifolds is established.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 192, Issue 1, 20 March 2005, Pages 183-208
Journal: Advances in Mathematics - Volume 192, Issue 1, 20 March 2005, Pages 183-208
نویسندگان
Isabella Novik,