کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9518144 | 1345528 | 2005 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Covariant and equivariant formality theorems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We give a proof of Kontsevich's formality theorem for a general manifold using Fedosov resolutions of algebras of polydifferential operators and polyvector fields. The main advantage of our construction of the formality quasi-isomorphism is that it is based on the use of covariant tensors unlike Kontsevich's original proof, which is based on â-jets of polydifferential operators and polyvector fields. Using our construction we prove that if a group G acts smoothly on a manifold M and M admits a G-invariant affine connection then there exists a G-equivariant quasi-isomorphism of formality. This result implies that if a manifold M is equipped with a smooth action of a finite or compact group G or equipped with a free action of a Lie group G then M admits a G-equivariant formality quasi-isomorphism. In particular, this gives a solution of the deformation quantization problem for an arbitrary Poisson orbifold.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 191, Issue 1, 15 February 2005, Pages 147-177
Journal: Advances in Mathematics - Volume 191, Issue 1, 15 February 2005, Pages 147-177
نویسندگان
Vasiliy Dolgushev,