کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9518881 1346156 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system
چکیده انگلیسی
The center problem and bifurcation of limit cycles for degenerate singular points are far to be solved in general. In this paper, we study center conditions and bifurcation of limit cycles at the degenerate singular point in a class of quintic polynomial vector field with a small parameter and eight normal parameters. We deduce a recursion formula for singular point quantities at the degenerate singular points in this system and reach with relative ease an expression of the first five quantities at the degenerate singular point. The center conditions for the degenerate singular point of this system are derived. Consequently, we construct a quintic system, which can bifurcates 5 limit cycles in the neighborhood of the degenerate singular point. The positions of these limit cycles can be pointed out exactly without constructing Poincaré cycle fields. The technique employed in this work is essentially different from more usual ones. The recursion formula we present in this paper for the calculation of singular point quantities at degenerate singular point is linear and then avoids complex integrating operations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 129, Issue 2, February 2005, Pages 127-138
نویسندگان
, , ,