کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9640479 509875 2005 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds
چکیده انگلیسی
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered. First, the equations of motion are transformed using the Lyapunov-Floquet transformation such that the linear parts of new set of equations are time invariant. At this stage, the linear order reduction technique can be applied in a straightforward manner. A nonlinear order reduction methodology is also suggested through a generalization of the invariant manifold technique via 'Time Periodic Center Manifold Theory'. A 'reducibility condition' is derived to provide conditions under which a nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An example consisting of two parametrically excited coupled pendulums is given to show potential applications to real problems. Order reduction possibilities and results for various cases including 'parametric', 'internal', 'true internal' and 'combination' resonances are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Sound and Vibration - Volume 284, Issues 3–5, 21 June 2005, Pages 985-1002
نویسندگان
, , ,