کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9652965 | 677010 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
CBAR: an efficient method for mining association rules
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The discovery of association rules is an important data-mining task for which many algorithms have been proposed. However, the efficiency of these algorithms needs to be improved to handle real-world large datasets. In this paper, we present an efficient algorithm named cluster-based association rule (CBAR). The CBAR method is to create cluster tables by scanning the database once, and then clustering the transaction records to the k-th cluster table, where the length of a record is k. Moreover, the large itemsets are generated by contrasts with the partial cluster tables. This not only prunes considerable amounts of data reducing the time needed to perform data scans and requiring less contrast, but also ensures the correctness of the mined results. Experiments with the FoodMart transaction database provided by Microsoft SQL Server show that CBAR outperforms Apriori, a well-known and widely used association rule.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 18, Issues 2â3, April 2005, Pages 99-105
Journal: Knowledge-Based Systems - Volume 18, Issues 2â3, April 2005, Pages 99-105
نویسندگان
Yuh-Jiuan Tsay, Jiunn-Yann Chiang,