کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9652967 | 677010 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning filtering rulesets for ranking refinement in relevance feedback
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we propose an approach for refining a document ranking by learning filtering rulesets through relevance feedback. This approach includes two important procedures. One is a filtering method, which can be incorporated into any kinds of information retrieval systems. The other is a learning algorithm to make a set of filtering rules, each of which specifies a condition to identify relevant documents using combinations of characteristic words. Our approach is useful not only to overcome the limitation of the vector space model, but also to utilize tags of semi-structured documents like Web pages. Through experiments we show our approach improves the performance of relevance feedback in two types of IR systems adopting the vector space model and a Web search engine, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 18, Issues 2â3, April 2005, Pages 117-124
Journal: Knowledge-Based Systems - Volume 18, Issues 2â3, April 2005, Pages 117-124
نویسندگان
Masayuki Okabe, Seiji Yamada,