کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653117 677478 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Training neural networks with heterogeneous data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Training neural networks with heterogeneous data
چکیده انگلیسی
Data pruning and ordered training are two methods and the results of a small theory that attempts to formalize neural network training with heterogeneous data. Data pruning is a simple process that attempts to remove noisy data. Ordered training is a more complex method that partitions the data into a number of categories and assigns training times to those assuming that data size and training time have a polynomial relation. Both methods derive from a set of premises that form the 'axiomatic' basis of our theory. Both methods have been applied to a time-delay neural network-which is one of the main learners in Microsoft's Tablet PC handwriting recognition system. Their effect is presented in this paper along with a rough estimate of their effect on the overall multi-learner system. The handwriting data and the chosen language are Italian.1
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issues 5–6, July–August 2005, Pages 595-601
نویسندگان
, ,