کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653117 | 677478 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Training neural networks with heterogeneous data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Data pruning and ordered training are two methods and the results of a small theory that attempts to formalize neural network training with heterogeneous data. Data pruning is a simple process that attempts to remove noisy data. Ordered training is a more complex method that partitions the data into a number of categories and assigns training times to those assuming that data size and training time have a polynomial relation. Both methods derive from a set of premises that form the 'axiomatic' basis of our theory. Both methods have been applied to a time-delay neural network-which is one of the main learners in Microsoft's Tablet PC handwriting recognition system. Their effect is presented in this paper along with a rough estimate of their effect on the overall multi-learner system. The handwriting data and the chosen language are Italian.1
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issues 5â6, JulyâAugust 2005, Pages 595-601
Journal: Neural Networks - Volume 18, Issues 5â6, JulyâAugust 2005, Pages 595-601
نویسندگان
John A. Drakopoulos, Ahmad Abdulkader,