کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653127 | 677478 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Handling missing values in support vector machine classifiers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper discusses the task of learning a classifier from observed data containing missing values amongst the inputs which are missing completely at random1. A non-parametric perspective is adopted by defining a modified risk taking into account the uncertainty of the predicted outputs when missing values are involved. It is shown that this approach generalizes the approach of mean imputation in the linear case and the resulting kernel machine reduces to the standard Support Vector Machine (SVM) when no input values are missing. Furthermore, the method is extended to the multivariate case of fitting additive models using componentwise kernel machines, and an efficient implementation is based on the Least Squares Support Vector Machine (LS-SVM) classifier formulation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issues 5â6, JulyâAugust 2005, Pages 684-692
Journal: Neural Networks - Volume 18, Issues 5â6, JulyâAugust 2005, Pages 684-692
نویسندگان
K. Pelckmans, J. De Brabanter, J.A.K. Suykens, B. De Moor,