کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653129 677478 2005 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving dimensionality reduction with spectral gradient descent
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Improving dimensionality reduction with spectral gradient descent
چکیده انگلیسی
We introduce spectral gradient descent, a way of improving iterative dimensionality reduction techniques.1 The method uses information contained in the leading eigenvalues of a data affinity matrix to modify the steps taken during a gradient-based optimization procedure. We show that the approach is able to speed up the optimization and to help dimensionality reduction methods find better local minima of their objective functions. We also provide an interpretation of our approach in terms of the power method for finding the leading eigenvalues of a symmetric matrix and verify the usefulness of the approach in some simple experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issues 5–6, July–August 2005, Pages 702-710
نویسندگان
, ,