| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9655104 | 684025 | 2005 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Threshold properties of random boolean constraint satisfaction problems
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													نظریه محاسباتی و ریاضیات
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												We study threshold properties of random constraint satisfaction problems under a probabilistic model due to Molloy [Models for random constraint satisfaction problems, in: Proceedings of the 32nd ACM Symposium on Theory of Computing, 2002]. We give a sufficient condition for the existence of a sharp threshold. In the boolean case, it gives an independent proof for the more difficult half of a classification result conjectured by Creignou and Daudé [Generalized satisfiability problems: minimal elements and phase transitions. Theor. Comput. Sci. 302(1-3) (2003) 417-430], proved in a restricted case by the same authors [Combinatorial sharpness criterion and phase transition classification for random CSPs, Inform. Comput. 190(2) (2004) 220-238], and established by them [Coarse and sharp thresholds for random generalized satisfiability problems, in: M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger (Eds.), Mathematics and Computer Science III: Algorithms, Trees, Combinatorics and Probabilities, Birkhauser, Basel, September 2004, pp. 507-517] while this paper was in the refereeing process.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 153, Issues 1â3, 1 December 2005, Pages 141-152
											Journal: Discrete Applied Mathematics - Volume 153, Issues 1â3, 1 December 2005, Pages 141-152
نویسندگان
												Gabriel Istrate,