کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9655985 | 685250 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the Borel Complexity of Hahn-Banach Extensions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The classical Hahn-Banach Theorem states that any linear bounded functional defined on a linear subspace of a normed space admits a norm-preserving linear bounded extension to the whole space. The constructive and computational content of this theorem has been studied by Bishop, Bridges, Metakides, Nerode, Shore, Kalantari, Downey, Ishihara and others and it is known that the theorem does not admit a general computable version. We prove a new computable version of this theorem without unrolling the classical proof of the theorem itself. More precisely, we study computability properties of the uniform extension operator which maps each functional and subspace to the set of corresponding extensions. It turns out that this operator is upper semi-computable in a well-defined sense. By applying a computable version of the Banach-Alaoglu Theorem we can show that computing a Hahn-Banach extension cannot be harder than finding a zero on a compact metric space. This allows us to conclude that the Hahn-Banach extension operator is â20-computable while it is easy to see that it is not lower semi-computable in general. Moreover, we can derive computable versions of the Hahn-Banach Theorem for those functionals and subspaces which admit unique extensions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 120, 3 February 2005, Pages 3-16
Journal: Electronic Notes in Theoretical Computer Science - Volume 120, 3 February 2005, Pages 3-16
نویسندگان
Vasco Brattka,