کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9667123 | 863115 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The nearly singular integrals occur in the boundary integral equations when the source point is close to an integration element (as compared to its size) but not on the element. In this paper, the concept of a relative distance from a source point to the boundary element is introduced to describe possible influence of the singularity of the integrals. Then a semi-analytical algorithm is proposed for evaluating the nearly strongly singular and hypersingular integrals in the three-dimensional BEM. By using integration by parts, the nearly singular surface integrals on the elements are transformed to a series of line integrals along the contour of the element. The singular behavior, which appears as factor, is separated from remaining regular integrals. Consequently standard numerical quadrature can provide very accurate evaluation of the resulting line integrals. The semi-analytical algorithm is applied to analyzing the three-dimensional elasticity problems, such as very thin-walled structures. Meanwhile, the displacements and stresses at the interior points very close to its bounding surface are also determined efficiently. The results of the numerical investigation demonstrate the accuracy and effectiveness of the algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 194, Issues 9â11, 18 March 2005, Pages 1057-1074
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 194, Issues 9â11, 18 March 2005, Pages 1057-1074
نویسندگان
Zhongrong Niu, W.L. Wendland, Xiuxi Wang, Huanlin Zhou,