کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9702454 | 1462565 | 2005 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Application of Support Vector Machines to Gas Turbine Performance Diagnosis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
SVMs (support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A C-support vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Fivefold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93% even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Aeronautics - Volume 18, Issue 1, February 2005, Pages 15-19
Journal: Chinese Journal of Aeronautics - Volume 18, Issue 1, February 2005, Pages 15-19
نویسندگان
Ying HAO, Jian-guo SUN, Guo-qing YANG, Jie BAI,