کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9702454 1462565 2005 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Application of Support Vector Machines to Gas Turbine Performance Diagnosis
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
پیش نمایش صفحه اول مقاله
The Application of Support Vector Machines to Gas Turbine Performance Diagnosis
چکیده انگلیسی
SVMs (support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A C-support vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Fivefold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93% even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Aeronautics - Volume 18, Issue 1, February 2005, Pages 15-19
نویسندگان
, , , ,