کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9705381 | 1464617 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new modeling methodology for nonstationary machine tool thermal errors. The method uses the dynamic neural network model to track nonlinear time-varying machine tool errors under various thermal conditions. To accommodate the nonstationary nature of the thermo-elastic process, an Integrated Recurrent Neural Network (IRNN) is introduced to identify the nonstationarity of the thermo-elastic process with a deterministic linear trend. Experiments on spindle thermal deformation are conducted to evaluate the model performance in terms of model estimation accuracy and robustness. The comparison indicates that the IRNN performs better than other modeling methods, such as, multi-variable regression analysis (MRA), multi-layer feedforward neural network (MFN), and recurrent neural network (RNN), in terms of model robustness under a variety of working conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Machine Tools and Manufacture - Volume 45, Issues 4â5, April 2005, Pages 455-465
Journal: International Journal of Machine Tools and Manufacture - Volume 45, Issues 4â5, April 2005, Pages 455-465
نویسندگان
Hong Yang, Jun Ni,