کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9706604 | 1465418 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sakiadis flow of an upper-convected Maxwell fluid
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The flow of an upper-convected Maxwell (UCM) fluid is studied theoretically above a rigid plate moving steadily in an otherwise quiescent fluid. It is assumed that the Reynolds number of the flow is high enough for boundary layer approximation to be valid. Assuming a laminar, two-dimensional flow above the plate, the concept of stream function coupled with the concept of similarity solution is utilized to reduce the governing equations into a single third-order ODE. It is concluded that the fluid's elasticity destroys similarity between velocity profiles; thus an attempt was made to find local similarity solutions. Three different methods will be used to solve the governing equation: (i) the perturbation method, (ii) the fourth-order Runge-Kutta method, and (iii) the finite-difference method. The velocity profiles obtained using the latter two methods are shown to be virtually the same at corresponding Deborah number. The velocity profiles obtained using perturbation method, in addition to being different from those of the other two methods, are dubious in that they imply some degree of reverse flow. The wall skin friction coefficient is predicted to decrease with an increase in the Deborah number for Sakiadis flow of a UCM fluid. This prediction is in direct contradiction with that reported in the literature for a second-grade fluid.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 40, Issue 9, November 2005, Pages 1220-1228
Journal: International Journal of Non-Linear Mechanics - Volume 40, Issue 9, November 2005, Pages 1220-1228
نویسندگان
Kayvan Sadeghy, Amir-Hosain Najafi, Meghdad Saffaripour,