کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9741177 | 1489449 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and provides insight into the preservation properties of the scheme. In this paper we initiate a backward error analysis for PDE discretizations, in particular of multisymplectic box schemes for the nonlinear Schrödinger equation. We show that the associated modified differential equations are also multisymplectic and derive the modified conservation laws which are satisfied to higher order by the numerical solution. Higher order preservation of the modified local conservation laws is verified numerically.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 69, Issues 3â4, 24 June 2005, Pages 290-303
Journal: Mathematics and Computers in Simulation - Volume 69, Issues 3â4, 24 June 2005, Pages 290-303
نویسندگان
A.L. Islas, C.M. Schober,