کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
974996 1479785 2014 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله
Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?
چکیده انگلیسی

This paper addresses the question whether dual long memory (LM), asymmetry and structural breaks in stock market returns matter when forecasting the value at risk (VaR) and expected shortfall (ES) for short and long trading positions. We answer this question for the Gulf Cooperation Council (GCC) stock markets. Empirically, we test the occurrence of structural breaks in the GCC return data using the Inclan and Tiao (1994)’s algorithm and we check the relevance of LM using Shimotsu (2006) procedure before estimating the ARFIMA-FIGARCH and ARFIMA-FIAPARCH models with different innovations’ distributions and computing VaR and ES. Our results show that all the GCC market's volatilities exhibit significant structural breaks matching mainly with the 2008–2009 global financial crises and the Arab spring. Also, they are governed by LM process either in the mean or in the conditional variance which cannot be due to the occurrence of structural breaks. Furthermore, the forecasting ability analysis shows that the FIAPARCH model under skewed Student-t distribution turn out to improve substantially the VaR and the ES forecasts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The North American Journal of Economics and Finance - Volume 29, July 2014, Pages 349–380
نویسندگان
, ,