کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
981311 1480385 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining Unstructured Turkish Economy News Articles
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله
Mining Unstructured Turkish Economy News Articles
چکیده انگلیسی

Text mining is the analysis of unstructured data by combining techniques from knowledge discovery in databases, natural language processing, information retrieval, and machine learning. Text mining allows us to analyze web content dynamically to find meaningful patterns within large collections of textual data.There are too many economic news articles to read. Therefore, it is a necessary to summarize them. In this study, TM is used to analyze the vast amount of text produced in newspaper articles in Turkey. We mine unstructured economy news with natural language processing techniques including tokenization, transform cases, filtering stopwords and stemming. Similarity analysis is also used to determine similar documents. The word vector is extracted. Therefore, economy news is structured into numeric representations that summarize them. In addition, k-means clustering is used. Consequently, the clusters and similarities of the articles are obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Economics and Finance - Volume 16, 2014, Pages 320-328