کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9867939 1530675 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soliton dynamics in a strong periodic field: The Korteweg-de Vries framework
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Soliton dynamics in a strong periodic field: The Korteweg-de Vries framework
چکیده انگلیسی
Nonlinear long wave propagation in a medium with periodic parameters is considered in the framework of a variable-coefficient Korteweg-de Vries equation. The characteristic period of the variable medium is varied from slow to rapid, and its amplitude is also varied. For the case of a piece-wise constant coefficient with a large scale for each constant piece, explicit results for the damping of a soliton damping are obtained. These theoretical results are confirmed by numerical simulations of the variable-coefficient Korteweg-de Vries equation for the same piece-wise constant coefficient, as well as for a sinusoidally-varying coefficient. The resonance curve for soliton damping is predicted, and the maximum damping is for a soliton whose characteristic timescale is of the same order as the coefficient inhomogeneity scale. If the variation of the nonlinear coefficient is very large, and includes a critical point where the nonlinear coefficient equals to zero, the soliton breaks and is quickly damped.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 344, Issues 2–4, 5 September 2005, Pages 203-210
نویسندگان
, , ,