کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9877544 | 1534080 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Permutation entropy quantifies the diversity of possible orderings of the values a random or deterministic system can take, as Shannon entropy quantifies the diversity of values. We show that the metric and permutation entropy rates-measures of new disorder per new observed value-are equal for ergodic finite-alphabet information sources (discrete-time stationary stochastic processes). With this result, we then prove that the same holds for deterministic dynamical systems defined by ergodic maps on n-dimensional intervals. This result generalizes a previous one for piecewise monotone interval maps on the real line [C. Bandt, G. Keller, B. Pompe, Entropy of interval maps via permutations, Nonlinearity 15 (2002) 1595-1602.] at the expense of requiring ergodicity and using a definition of permutation entropy rate differing modestly in the order of two limits. The case of non-ergodic finite-alphabet sources is also studied and an inequality developed. Finally, the equality of permutation and metric entropy rates is extended to ergodic non-discrete information sources when entropy is replaced by differential entropy in the usual way.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 210, Issues 1â2, 1 October 2005, Pages 77-95
Journal: Physica D: Nonlinear Phenomena - Volume 210, Issues 1â2, 1 October 2005, Pages 77-95
نویسندگان
José M. Amigó, Matthew B. Kennel, Ljupco Kocarev,