کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9877671 | 1534090 | 2005 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical computation of travelling breathers in Klein-Gordon chains
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We numerically study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions having the property of being exactly translated by p sites along the chain after a fixed propagation time T (these solutions generalize the concept of solitary waves for which p=1). In the case of even on-site potentials, the existence of small amplitude travelling breathers superposed on a small oscillatory tail has been proved recently [G. James, Y. Sire, Travelling breathers with exponentially small tails in a chain of nonlinear oscillators, Commun. Math. Phys., 2005, in press (available online at http://www.springerlink.com)], the tail being exponentially small with respect to the central oscillation size. In this paper, we compute these solutions numerically and continue them into the large amplitude regime for different types of even potentials. We find that Klein-Gordon chains can support highly localized travelling breather solutions superposed on an oscillatory tail. We provide examples where the tail can be made very small and is difficult to detect at the scale of central oscillations. In addition, we numerically observe the existence of these solutions in the case of non-even potentials.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 204, Issues 1â2, 1 May 2005, Pages 15-40
Journal: Physica D: Nonlinear Phenomena - Volume 204, Issues 1â2, 1 May 2005, Pages 15-40
نویسندگان
Yannick Sire, Guillaume James,