کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9952374 | 1449509 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Exploring high-dimensional data through locally enhanced projections
ترجمه فارسی عنوان
بررسی داده های با ابعاد بزرگ از طریق پیش بینی های محلی افزایش یافته است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طرح ریزی کاهش ابعاد، تجزیه و تحلیل داده های محلی، داده های با ابعاد بزرگ، تجزیه و تحلیل زیر فضای،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Languages & Computing - Volume 48, October 2018, Pages 144-156
Journal: Journal of Visual Languages & Computing - Volume 48, October 2018, Pages 144-156
نویسندگان
Chufan Lai, Ying Zhao, Xiaoru Yuan,