کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
998310 1481478 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting electricity demand using generalized long memory
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Forecasting electricity demand using generalized long memory
چکیده انگلیسی

This paper studies the hourly electricity load demand in the area covered by a utility situated in the southeast of Brazil. We propose a stochastic model which employs generalized long memory (by means of Gegenbauer processes) to model the seasonal behaviour of the load. The proposed model treats each hour's load separately as an individual series. This approach avoids modelling the intricate intra-day pattern (load profile) displayed by the load, which varies throughout the week as well as through the seasons. The forecasting performance of the model is compared with a SARIMA benchmark using the years of 1999 and 2000 as the holdout sample. The model clearly outperforms the benchmark. Moreover, we conclude that long memory behaviour is present in these data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 22, Issue 1, January–March 2006, Pages 17–28
نویسندگان
, ,