کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10148874 1646701 2019 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhancement of robustness of face recognition system through reduced gaussianity in Log-ICA
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Enhancement of robustness of face recognition system through reduced gaussianity in Log-ICA
چکیده انگلیسی
By reducing the gaussianity, Independent Component Analysis (ICA) behaves robustly in segregating individual signals of non-skewed characteristic from a mixed composite signal. In this article, we present a next-generation variant of ICA, especially applicable in the skewed composite signal scenario, applying the Logarithmic transformation on basic ICA, named as Log-ICA. This approach is capable of decreasing overlapping probability densities of the composite signal, which, in turn, extracts more independent components because of reduced gaussianity. Here also we use two different architectures Log-ICA I and Log-ICA II corresponding to two variants of ICA architecture (ICA I and ICA II). We justify the effectiveness of the proposed technique on five separate benchmark face datasets using five classifiers. Out of five face datasets, two datasets contain both visible and thermal face images. Experimental results show that Log-ICA II performs better than Log-ICA I and two variants of ICA for original face images and noise-induced face images.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 116, February 2019, Pages 96-107
نویسندگان
, , , , ,