کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381967 660712 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of sentiment reviews using n-gram machine learning approach
ترجمه فارسی عنوان
طبقه بندی بررسی احساسات با استفاده از روش های یادگیری ماشین n-gram
کلمات کلیدی
تجزیه و تحلیل احساسات؛ بیزین ساده (NB)؛ حداکثر آنتروپی (ME)؛ ؛ ماشین بردار پشتیبانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A large number of sentiment reviews, blogs and comments present online.
• These reviews must be classified to obtain a meaningful information.
• Four different supervised machine learning algorithm used for classification.
• Unigram, Bigram, Trigram models and their combinations used for classification.
• The classification is done on IMDb movie review dataset.

With the ever increasing social networking and online marketing sites, the reviews and blogs obtained from those, act as an important source for further analysis and improved decision making. These reviews are mostly unstructured by nature and thus, need processing like classification or clustering to provide a meaningful information for future uses. These reviews and blogs may be classified into different polarity groups such as positive, negative, and neutral in order to extract information from the input dataset. Supervised machine learning methods help to classify these reviews. In this paper, four different machine learning algorithms such as Naive Bayes (NB), Maximum Entropy (ME), Stochastic Gradient Descent (SGD), and Support Vector Machine (SVM) have been considered for classification of human sentiments. The accuracy of different methods are critically examined in order to access their performance on the basis of parameters such as precision, recall, f-measure, and accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 57, 15 September 2016, Pages 117–126
نویسندگان
, , ,