کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10151176 | 1666107 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A method based on refined composite multi-scale symbolic dynamic entropy and ISVM-BT for rotating machinery fault diagnosis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multiscale symbolic dynamic entropy (MSDE) has been recently proposed to characterize the dynamical behavior of time series, which has merits of high computational efficiency and robustness to noise comparing with multiscale sample entropy (MSE) and multiscale permutation entropy (MPE). However, the variance of the MSDE values increases as the length of a time series becomes shorter using multiscale analysis. To address this shortcoming, a new method, namely refined composite multi-scale symbolic dynamic entropy (RCMSDE), is proposed to extract the fault information of rotating machinery. Then, Laplacian score (LS) is utilized to reduce the dimension of eigenvectors. In the end, the selected features are taken as the input of the improved support vector machine based on binary tree (ISVM-BT) for fault type identification. The effectiveness of the proposed method is validated using both the simulation and two experimental tests. Results demonstrate that the proposed method generates highest classification accuracy in comparison with existing methods such as MSDE, refined composite multiscale sample entropy (RCMSE) and refined composite multiscale permutation entropy (RCMPE).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 315, 13 November 2018, Pages 246-260
Journal: Neurocomputing - Volume 315, 13 November 2018, Pages 246-260
نویسندگان
Yongbo Li, Xihui Liang, Yu Wei, Xianzhi Wang,