کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10151208 685009 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On polygon numbers of circle graphs and distance hereditary graphs
ترجمه فارسی عنوان
بر روی تعداد چند ضلعی گراف های دایره و نمودار های ارضی فاصله
کلمات کلیدی
نمودار دایره، گراف چند ضلعی، نمودار تعویض، فاصله گراف ارثی تعداد چند ضلعی، تعداد سیارک،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
In this paper, we show that ψ(G) is always at least as large as the asteroidal number of G, and equal to the asteroidal number of G when G is a connected distance hereditary graph that is not a clique. This implies that the classes of distance hereditary permutation graphs and distance hereditary AT-free graphs are the same, and we give a forbidden subgraph characterization of that class. We also establish the following upper bounds: ψ(G) is at most the clique cover number of G if G is not a clique, at most 1 plus the independence number of G, and at most ⌈n∕2⌉ where n≥3 is the number of vertices of G. Our results lead to linear time algorithms for finding the minimum number of corners that must be added to a given circle representation to produce a polygon representation, and for finding the asteroidal number of a distance hereditary graph, both of which are improvements over previous algorithms for those problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 248, 30 October 2018, Pages 3-17
نویسندگان
, ,