کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10199 671 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering
چکیده انگلیسی

Cell seeding on knitted scaffolds often require a gel system, which was found to be practically unsuitable for anterior cruciate ligament (ACL) reconstruction as the cell–gel composite often gets dislodged from the scaffold in the in vivo dynamic situations. In order to solve this problem, we fabricated this combined silk scaffold with weblike microporous silk sponges formed in the openings of a knitted silk scaffold and subsequently combined with adult human bone marrow-derived mesenchymal stem cells (hMSCs) for in vitro ligament tissue engineering. Human MSCs adhered and grew well on the combined silk scaffolds. Moreover, in comparison with the knitted silk scaffolds seeded with hMSCs in fibroin gel the cellular function was more actively exhibited on the combined silk scaffolds, as evident by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for ligament-related gene markers (e.g., type I, III collagen and tenascin-C), immunohistochemical and western blot evaluations of ligament-related extracellular matrix (ECM) components. While the knitted structure holds the microporous silk sponges together and provides the structural strength of the combined silk scaffold, the microporous structure of the silk sponges mimic the ECM which consequently promotes cell proliferation, function, and differentiation. This feature overcomes the limitation of knitted scaffold for ligament tissue engineering application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 29, Issue 6, February 2008, Pages 662–674
نویسندگان
, , , , ,