کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10224923 1701137 2018 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental investigation on abrasive supercritical CO2 jet perforation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Experimental investigation on abrasive supercritical CO2 jet perforation
چکیده انگلیسی
abrasive supercritical CO2 (SC-CO2) jet perforation is the key procedure in the SC-CO2 fracturing, which will directly affect the exploitation of oil and gas. The properties of the SC-CO2 fluid, such as density, viscosity, diffusivity and so on, change greatly with the variation of temperature and pressure, which directly affect the particle-carrying ability and perforation performance. This paper investigates the influence of key parameters, such as ambient pressure, fluid temperature, jet standoff distance and jet pressure, on the perforation ability of abrasive SC-CO2 jet. The results indicate that the ambient pressure has no significant effect on perforation under the condition of a fixed jet differential pressure. When the confining pressure increases from 5 to 15 MPa, the hole depth and diameter decrease by 5.7% and 18.6% respectively. The hole depth increases slightly with the rising of jet temperature. In addition, with the jet temperature rising per 20℃ within the range from 40 to 100℃ and the standoff distances being 4 to 10 mm, the hole depths increase by 3.8% and 12.0% in average, respectively. Furthermore, the hole depths keep unchanged at first and then decrease rapidly with the increasing standoff distance. However, the hole diameters and effectively impinged areas increase with the standoff distance. The influences of SC-CO2 jet pressure on the perforation performance are similar to that of the conventional jet. Additonally, both effective hole depths and volumes increase linearly in general with the increasing of jet pressure. The hole depths averagely increase by 36.6% when the SC-CO2 jet pressure rising by 5 MPa. Furthermore, the research also shows that perforation performance of pre-mixed jet is better than the post-mixed jet, the volume ratio of the two kinds of perforating holes is 12.02 under these experimental conditions. All the above merits have provided a theoretical foundation and experimental proven for the field application of SC-CO2 jet perforation technology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of CO2 Utilization - Volume 28, December 2018, Pages 59-65
نویسندگان
, , , , , , , ,