کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10227540 | 449 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments
ترجمه فارسی عنوان
اثر معماری ماتریس فیبرلر بر نفوذ سلول های تومور به محیط های چالش برانگیز
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی
Local invasion by and dissemination of cancer cells from a primary tumor are key initial steps of metastasis, the most lethal aspect of cancer. To study these processes in vitro, the invasion of cells from multicellular breast cancer aggregates embedded in three-dimensional (3D) extracellular matrix culture systems was studied. This work showed that in 3D fibrillar environments composed of collagen I, pore size - not the viscoelastic properties of the matrix - was the biophysical characteristic controlling breast cancer cell invasion efficiency. Furthermore, it was shown that fibrillar matrix architecture is a crucial factor that allows for efficient 3D invasion. In a 3D non-fibrillar environment composed of basement membrane extract (BME), invasion efficiency was greatly diminished, the mesenchymal individual mode of 3D invasion was abolished, and establishment of cell polarity and protrusions was compromised. These effects were seen even though the BME matrix has invasion permissive viscoelasticity and suitable adhesion ligands. The altered and limited invasive behavior observed in BME was rescued through introduction of fibrillar collagen into the non-fibrillar matrix. The biophysical cues of fibrillar collagen facilitated efficient invasion of sterically disadvantageous environments through assisting cell polarization and formation of stable cell protrusions. Finally, we suggest the composite matrices employed in this study consisting of fibrillar collagen I and BME in either a liquid-like or gelled state are suitable for a wide range of 3D cell studies, as these matrices combine fibrillar features that require cells to deploy integrin-dependent mechanotransduction machinery and a tunable non-fibrillar component that may require cells to adopt alternative migratory modes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 35, Issue 25, August 2014, Pages 6954-6963
Journal: Biomaterials - Volume 35, Issue 25, August 2014, Pages 6954-6963
نویسندگان
Asja Guzman, Michelle J. Ziperstein, Laura J. Kaufman,