کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10227851 465 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The amelioration of cartilage degeneration by ADAMTS-5 inhibitor delivered in a hyaluronic acid hydrogel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
The amelioration of cartilage degeneration by ADAMTS-5 inhibitor delivered in a hyaluronic acid hydrogel
چکیده انگلیسی
Degradation of proteoglycan is the key early event in the development of osteoarthritis (OA). The aggrecanase ADAMTS-5 has been identified as the major enzyme responsible for the degradation and thus is an attractive therapeutic target for OA. However, currently there is no report on using an ADAMTS-5 inhibition strategy for OA treatment. The present study aimed to investigate the synergic effect of combining an ADAMTS-5 inhibitor (114810) with a hyaluronic acid hydrogel (HAX) for OA therapeutics. Two OA models were induced by surgically creating an osteochondral defect or removing the anterior cruciate ligament (ACL) in Sprague-Dawley rats. Human OA cartilage was obtained from total joint replacement patients. Both human and rat OA cartilage showed marked proteoglycan loss with significantly increased ADAMTS-5 expression. The effectiveness of ADAMTS-5 inhibition by 114810 was confirmed by a cartilage explants assay in vitro, which showed that the 114810 halted the aggrecanase-mediated 374ARGS neoepitope released from aggrecan induced by IL-1β stimulation. The in vivo effect of ADAMTS-5 inhibition was assessed by the articular injection of HAX with 114810 into OA knee joints. Evaluated eight weeks after injection, 114810 with HAX significantly promoted the in vivo cartilage healing in the osteochondral defect model, and prevented the progression of degenerative changes in the ACL model. Our results confirmed that ADAMTS-5 is an effective target for OA treatment, and the intra-articular injection of an ADAMTS-5 inhibitor within HAX gel could be a promising strategy for OA treatment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 35, Issue 9, March 2014, Pages 2827-2836
نویسندگان
, , , , , , , , , , , ,