کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10229170 509 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Porous decellularized adipose tissue foams for soft tissue regeneration
ترجمه فارسی عنوان
فوم بافت چسبنده پوسته شده برای بازسازی بافت نرم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی
To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating “bead foams” comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 34, Issue 13, April 2013, Pages 3290-3302
نویسندگان
, , , , , , ,