کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1030837 1483578 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting
ترجمه فارسی عنوان
یک مدل ترکیبی عصبی فازی بر اساس تجزیه و تحلیل طیف منحصر به فرد برای پیش بینی تقاضای حمل و نقل هوایی
کلمات کلیدی
پیش بینی تقاضای حمل و نقل هوایی، تجزیه و تحلیل طیف منحصر به فرد، سیستم استنتاج فازی مبتنی بر شبکه سازگار، بهینه سازی ذرات ذرات
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری استراتژی و مدیریت استراتژیک
چکیده انگلیسی


• Air traffic is complex due to its irregularity, volatility and seasonality.
• We propose a hybrid approach, SSA–ANFIS–IPSO, for air passenger traffic prediction.
• HK air passenger data are collected to establish and validate our model.
• Empirical results prove the proposed approach possesses the enormous potential.

Air transport demand forecasting is receiving increasing attention, especially because of intrinsic difficulties and practical applications. Total passengers are used as a proxy for air transport demand. However, the air passenger time series usually has a complex behavior due to their irregularity, high volatility and seasonality. This paper proposes a new hybrid approach, combining singular spectrum analysis (SSA), adaptive-network-based fuzzy inference system (ANFIS) and improved particle swarm optimization (IPSO), for short-term air passenger traffic prediction. The SSA is used for identifying and extracting the trend and seasonality of air transport demand and the artificial intelligence technologies, including ANFIS and IPSO, are utilized to deal with the irregularity and volatility of the demand. The HK air passenger data are collected to establish and validate the forecasting model. Empirical results clearly points to the enormous potential that the proposed approach possesses in air transport demand forecasting and can be considered as a viable alternative.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Air Transport Management - Volume 39, July 2014, Pages 1–11
نویسندگان
, , , , , ,