| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10321764 | 660751 | 2015 | 9 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Audio parameterization with robust frame selection for improved bird identification
												
											ترجمه فارسی عنوان
													پارازیت صوتی با انتخاب قاب قوی برای شناسایی پرنده بهبود یافته 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												A major challenge in the automated acoustic recognition of bird species is the audio segmentation, which aims to select portions of audio that contain meaningful sound events and eliminates segments that contain predominantly background noise or sound events of other origin. Here we report on the development of an audio parameterization method with integrated robust frame selection that makes use of morphological filtering applied on the spectrogram seen as an image. The morphological filtering allows to exclude from further processing certain audio events, which otherwise could cause misclassification errors. The Mel Frequency Cepstral Coefficients (MFCCs) computed for the selected audio frames offer a good representation of the spectral information for dominant vocalizations because the morphological filtering eliminates short bursts of noise and suppresses weak competing signals. Experimental validation of the proposed method on the identification of 40 bird species from Brazil demonstrated superior accuracy and faster operation than three traditional and recent approaches. This is expressed as reduction of the relative error rate by 3.4% and the overall operational time by 7.5% when compared to the second best result. The improved frame selection robustness, precision, and operational speed facilitate applications like multi-species identification of real-field recordings.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 22, 1 December 2015, Pages 8463-8471
											Journal: Expert Systems with Applications - Volume 42, Issue 22, 1 December 2015, Pages 8463-8471
نویسندگان
												Thiago M. Ventura, Allan G. de Oliveira, Todor D. Ganchev, Josiel M. de Figueiredo, Olaf Jahn, Marinez I. Marques, Karl-L. Schuchmann, 
											