کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10322035 660813 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global geometric similarity scheme for feature selection in fault diagnosis
ترجمه فارسی عنوان
طرح تشابه هندسی برای انتخاب ویژگی در تشخیص خطا
کلمات کلیدی
انتخاب ویژگی، طرح تشابه هندسی همگانی، طبقه بندی وضعیت، ویژگی رتبه بندی، بسته بندی ویژگی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This work presents a global geometric similarity scheme (GGSS) for feature selection in fault diagnosis, which is composed of global geometric model and similarity metric. The global geometric model is formed to construct connections between disjoint clusters in fault diagnosis. The similarity metric of the global geometric model is applied to filter feature subsets. To evaluate the performance of GGSS, fault data from wind turbine test rig is collected, and condition classification is carried out with classifiers established by Support Vector Machine (SVM) and General Regression Neural Network (GRNN). The classification results are compared with feature ranking methods and feature wrapper approaches. GGSS achieves higher classification accuracy than the feature ranking methods, and better time efficiency than the feature wrapper approaches. The hybrid scheme, GGSS with wrapper, obtains optimal classification accuracy and time efficiency. The proposed scheme can be applied in feature selection to get better accuracy and efficiency in condition classification of fault diagnosis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 8, 15 June 2014, Pages 3585-3595
نویسندگان
, , ,