کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10322044 | 660813 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Integration of feedforward neural network and finite element in the draw-bend springback prediction
ترجمه فارسی عنوان
ادغام شبکه عصبی فیدورفوری و عنصر محدود در پیش بینی چرخش کشش - خمش
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
To achieve accurate results, current nonlinear elastic recovery applications of finite element (FE) analysis have become more complicated for sheet metal springback prediction. In this paper, an alternative modelling method able to facilitate nonlinear recovery was developed for springback prediction. The nonlinear elastic recovery was processed using back-propagation networks in an artificial neural network (ANN). This approach is able to perform pattern recognition and create direct mapping of the elastically-driven change after plastic deformation. The FE program for the sheet metal springback experiment was carried out with the integration of ANN. The results obtained at the end of the FE analyses were found to have improved in comparison to the measured data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 8, 15 June 2014, Pages 3662-3670
Journal: Expert Systems with Applications - Volume 41, Issue 8, 15 June 2014, Pages 3662-3670
نویسندگان
M.R. Jamli, A.K. Ariffin, D.A. Wahab,