کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10322102 | 660819 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems
ترجمه فارسی عنوان
استفاده از رویکردهای خوشه ای برای حل مشکل کاربران خاکستری گوسفنده در سیستم های توصیه می شود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Recommender systems apply data mining and machine learning techniques for filtering unseen information and can predict whether a user would like a given item. This paper focuses on gray-sheep users problem responsible for the increased error rate in collaborative filtering based recommender systems. This paper makes the following contributions: we show that (1) the presence of gray-sheep users can affect the performance - accuracy and coverage - of the collaborative filtering based algorithms, depending on the data sparsity and distribution; (2) gray-sheep users can be identified using clustering algorithms in offline fashion, where the similarity threshold to isolate these users from the rest of community can be found empirically. We propose various improved centroid selection approaches and distance measures for the K-means clustering algorithm; (3) content-based profile of gray-sheep users can be used for making accurate recommendations. We offer a hybrid recommendation algorithm to make reliable recommendations for gray-sheep users. To the best of our knowledge, this is the first attempt to propose a formal solution for gray-sheep users problem. By extensive experimental results on two different datasets (MovieLens and community of movie fans in the FilmTrust website), we showed that the proposed approach reduces the recommendation error rate for the gray-sheep users while maintaining reasonable computational performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 7, 1 June 2014, Pages 3261-3275
Journal: Expert Systems with Applications - Volume 41, Issue 7, 1 June 2014, Pages 3261-3275
نویسندگان
Mustansar Ali Ghazanfar, Adam Prügel-Bennett,