کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10322120 660819 2014 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault diagnosis of rolling element bearings via discriminative subspace learning: Visualization and classification
ترجمه فارسی عنوان
تشخیص گسل از بلبرینگ عنصر نورد از طریق یادگیری زیر فضای تقسیم بندی: تجسم و طبقه بندی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Rolling element bearings play an important role in ensuring the availability of industrial machines. Unexpected bearing failures in such machines during field operation can lead to machine breakdown, which may have some pretty severe implications. To address such concern, we extend our algorithm for solving trace ratio problem in linear discriminant analysis to diagnose faulty bearings in this paper. Our algorithm is validated by comparison with other state-of art methods based on a UCI data set, and then be extended to rolling element bearing data. Through the construction of feature data set from sensor-based vibration signals of bearing, the fault diagnosis problem is solved as a pattern classification and recognition way. The two-dimensional visualization and classification accuracy of bearing data show that our algorithm is able to recognize different bearing fault categories effectively. Thus, it can be considered as a promising method for fault diagnosis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 7, 1 June 2014, Pages 3391-3401
نویسندگان
, , , ,