کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10322185 660850 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Practical implementation of knowledge-based approaches for steam-assisted gravity drainage production analysis
ترجمه فارسی عنوان
پیاده سازی عملی رویکردهای مبتنی بر دانش برای تجزیه و تحلیل تولید زهکشی گرانشی کمک بخار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this study, a comprehensive training set encompassing SAGD field data compiled from numerous publicly available sources is analyzed. Exploratory data analysis (EDA) is carried out to interpret and extract relevant attributes describing characteristics associated with reservoir heterogeneities and operating constraints. An extensive dataset consisting of over 70 records is assembled. Because of their ease of implementation and computational efficiency, knowledge-based techniques including artificial neural network (ANN) are employed to facilitate SAGD production performance prediction. The principal components analysis (PCA) technique is implemented to reduce the dimensionality of the input vector, alleviate the effects of over-fitting, and improve forecast quality. Statistical analysis is performed to analyze the uncertainties related to ANN model parameters and dataset. Predictions from the proposed approaches are both successful and reliable. It is demonstrated that model predictability is highly influenced by model parameter uncertainty. This work illustrates that data-driven models are capable of predicting SAGD recovery performance from log-derived and operational variables. The modeling approach can be updated when new information becomes available. The analysis presents an important potential to be integrated directly into existing reservoir management and decision-making routines.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 21, 30 November 2015, Pages 7326-7343
نویسندگان
, , , ,