کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1032452 943239 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constrained subspace classifier for high dimensional datasets
ترجمه فارسی عنوان
طبقه بندی فضای محدود برای مجموعه داده ها با ابعاد بالا
کلمات کلیدی
طبقه بندی فضای محدود ؛ مجموعه داده ها با ابعادی بالا؛ زاویه اصلی؛ طبقه بندی فضای محلی
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری استراتژی و مدیریت استراتژیک
چکیده انگلیسی


• Constrained subspace classifier (CSC) is proposed for high dimensional datasets.
• CSC appears to be a robust classifier compared to traditional two-step methods.
• An efficient alternating optimization technique is also proposed.
• CSC can serve as a one-step method for preprocessing-free classification.

Datasets with significantly larger number of features, compared to samples, pose a serious challenge in supervised learning. Such datasets arise in various areas including business analytics. In this paper, a new binary classification method called constrained subspace classifier (CSC) is proposed for such high dimensional datasets. CSC improves on an earlier proposed classification method called local subspace classifier (LSC) by accounting for the relative angle between subspaces while approximating the classes with individual subspaces. CSC is formulated as an optimization problem and can be solved by an efficient alternating optimization technique. Classification performance is tested in publicly available datasets. The improvement in classification accuracy over LSC shows the importance of considering the relative angle between the subspaces while approximating the classes. Additionally, CSC appears to be a robust classifier, compared to traditional two step methods that perform feature selection and classification in two distinct steps.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Omega - Volume 59, Part A, March 2016, Pages 40–46
نویسندگان
, , , ,