کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10325992 | 677463 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A robust classifier combined with an auto-associative network for completing partly occluded images
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper describes an approach for constructing a classifier which is unaffected by occlusions in images. We propose a method for integrating an auto-associative network into a simple classifier. As the auto-associative network can recall the original image from a partly occluded input image, we can employ it to detect occluded regions and complete the input image by replacing those regions with recalled pixels. By iterating this reconstruction process, the integrated network is able to classify target objects with occlusions robustly. To confirm the effectiveness of this method, we performed experiments involving face image classification. It is shown that the classification performance is not decreased, even if about 30% of the face image is occluded.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 18, Issue 7, September 2005, Pages 958-966
Journal: Neural Networks - Volume 18, Issue 7, September 2005, Pages 958-966
نویسندگان
Takashi Takahashi, Takio Kurita,