کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326410 | 678070 | 2016 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Industrial image classification using a randomized neural-net ensemble and feedback mechanism
ترجمه فارسی عنوان
طبقه بندی صنعتی تصویری با استفاده از یک شبکه عصبی تصادفی و مکانیسم بازخورد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص دولت سوختن دانه بندی متغیر، بازخورد شبیه سازی شده خطای شناختی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Accurate burning state recognition plays an important role in rotary kiln sintering process control. In order to avoid significant discrepancy between human feedback cognitive mechanisms and traditional open-loop recognition methods, a novel intelligent cognitive model based on a variable granularity simulated feedback mechanism is explored in this paper, where evaluation indexes of cognitive results are established to freely regulate cognitive granularity, and the variable granularity simulated feedback mechanism is constructed to update cognitive features and cognitive rules with different granularities. The proposed cognitive model is applied to improve burning state recognition accuracy. With the initial granularity, a burning state recognition decision information system is developed using extracted flame image features. Random vector functional-linker (RVFL) network ensembles are employed to build the initial burning state recognition rules. By using cognitive errors and granularity transformation rules, a heuristic feedback mechanism is proposed to update the decision information system and recognition rules. The experimental results show that our method is effective and outperforms other open-loop recognition techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 708-714
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 708-714
نویسندگان
Weitao Li, Keqiong Chen, Dianhui Wang,