کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326428 | 678070 | 2016 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines
ترجمه فارسی عنوان
کنترل فرکانس بار با استفاده از حالت کشویی انتگرال مبتنی بر شبکه عصبی برای سیستم های غیرخطی با توربین های بادی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کنترل فرکانس بار، کنترل حالت یکپارچه کشویی، شبکه های عصبی، سیستم های قدرت، توربین بادی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Load frequency control (LFC) plays an important role in maintaining constant frequency in order to ensure the reliability of power systems. With the large-scale development of sustainable but intermittent sources such as wind and solar, such intermittency challenges the LFC problem. Moreover, the generation rate constraint (GRC) of power systems also complexes the LFC problem. Concerning the constraint, this paper addresses an integral sliding mode control (I-SMC) method for power systems with wind turbines. Since the intermittency of wind farms and the linearization of GRC deteriorate the uncertainties of power systems, sliding-mode-based neural networks are designed to approximate the uncertainties. Weight update formulas of the neural networks are derived from the Lyapunov direct method. The neural-network-based integral sliding mode controller is employed to achieve the LFC problem. By this scheme, not only are the update formulas obtained, but also the control system possesses the asymptotic stability. The simulation results by an interconnected power system illustrate the feasibility and validity of the presented method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 875-885
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 875-885
نویسندگان
Dianwei Qian, Shiwen Tong, Hong Liu, Xiangjie Liu,