کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10326439 678070 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A neural network for ℓ1−ℓ2 minimization based on scaled gradient projection: Application to compressed sensing
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A neural network for ℓ1−ℓ2 minimization based on scaled gradient projection: Application to compressed sensing
چکیده انگلیسی
Since compressed sensing was introduced in 2006, ℓ1−ℓ2 minimization admits a large number of applications in signal processing, statistical inference, magnetic resonance imaging (MRI), computed tomography (CT), etc. In this paper, we present a neural network for ℓ1−ℓ2 minimization based on scaled gradient projection. We prove that it is stable in the sense of Lyapunov and converges to an optimal solution of the ℓ1−ℓ2 minimization. We show that the proposed neural network is feasible and efficient for compressed sensing via simulation examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 988-993
نویسندگان
, ,