کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326479 | 678070 | 2016 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Super-resolution of remote sensing images via sparse structural manifold embedding
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Exploring signal processing technologies to enhance the resolution of remote sensing images has received increasing interests in the last decade. In order to well preserve the structural details such as edges, contours and textures in the recovered high-resolution images, we advance a new Sparse Structural Manifold Embedding (SSME) approach in this paper. By incorporating the geometric regularities of images along singularity of edges or contours into neighbors׳ selection, SSME can well recover structural information of images. Moreover, considering that outliers are often included into embedding to generate inaccurate structures, a robust and sparse embedding is used to exclude outliers in synthesizing high-resolution images, where normalized weights are employed to acquire more accurate neighbors and coding coefficients. Experiments are taken on realizing a 3à amplification of remote sensing images, and the results indicated that SSME has an improvement of about 0.1-0.3 dB over the state-of-the-art results in peak signal to noise ratio.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 1402-1411
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 1402-1411
نویسندگان
Wang Xinlei, Liu Naifeng,