| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10326490 | 678118 | 2011 | 10 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A deterministic annealing algorithm for the minimum concave cost network flow problem
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The existing algorithms for the minimum concave cost network flow problems mainly focus on the single-source problems. To handle both the single-source and the multiple-source problem in the same way, especially the problems with dense arcs, a deterministic annealing algorithm is proposed in this paper. The algorithm is derived from an application of the Lagrange and Hopfield-type barrier function. It consists of two major steps: one is to find a feasible descent direction by updating Lagrange multipliers with a globally convergent iterative procedure, which forms the major contribution of this paper, and the other is to generate a point in the feasible descent direction, which always automatically satisfies lower and upper bound constraints on variables provided that the step size is a number between zero and one. The algorithm is applicable to both the single-source and the multiple-source capacitated problem and is especially effective and efficient for the problems with dense arcs. Numerical results on 48 test problems show that the algorithm is effective and efficient.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 699-708
											Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 699-708
نویسندگان
												Chuangyin Dang, Yabin Sun, Yuping Wang, Yang Yang,